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Abstract
We propose the Convex Hull Convolutive Non-negative Matrix
Factorization (CH-CNMF) algorithm to learn temporal patterns
in multivariate time-series data. The algorithm factors a data
matrix into a basis tensor that contains temporal patterns and
an activation matrix that indicates the time instants when the
temporal patterns occurred in the data. Importantly, the tempo-
ral patterns correspond closely to the observed data and repre-
sent a wide range of dynamics. Experiments with synthetic data
show that the temporal patterns found by CH-CNMF match the
data better and provide more meaningful information than the
temporal patterns found by Convolutive Non-negative Matrix
Factorization with sparsity constraints (CNMF-SC). Addition-
ally, CH-CNMF applied on vocal tract constriction data yields
a wider range of articulatory gestures compared to CNMF-SC.
Moreover, we find that the gestures comprising the CH-CNMF
basis generalize better to unseen data and capture vocal tract
structure and dynamics significantly better than those compris-
ing the CNMF-SC basis.
Index Terms: dictionary learning, articulatory gestures, speech
production

1. Introduction
Observation of latent structure in data provides researchers with
a tool for data analysis and interpretation. Dictionary learn-
ing methods are commonly used to uncover the latent structure.
Non-negative matrix factorization (NMF) is a dictionary learn-
ing algorithm used in a wide range of fields, from speech en-
hancement [1, 2] and analysis [3] to computational biology [4]
and molecular analysis [5, 6]. First proposed by Paatero and
Tapper [7, 8] and developed further by Lee and Seung [9], NMF
decomposes a data matrix into a basis matrix that contains basic
units of the data and an activation matrix that encodes the data
in terms of the basis matrix. Convolutive NMF (CNMF) [10]
was proposed to consider temporal context in time-series data
and extract temporal patterns observed in the data. CNMF was
shown to find speech phones when operating on spectrograms
of speech. Sparsity constraints on either the basis or activation
matrix can be employed in order to get more interpretable out-
puts, depending on the application [11, 12]. In order to provide
interpretability of the sparsity parameter, Hoyer proposed NMF
with sparsity constraints (NMF-SC) [11], where the sparsity pa-
rameter ranges between 0 and 1, with 0 requiring no sparsity
and 1 enforcing maximum sparsity. A convolutive extension
to this algorithm, CNMF-SC, was recently proposed in [3] to
find articulatory primitives in Electromagnetic Articulography
(EMA) data.
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One drawback of NMF and the variants mentioned above is
the requirement of a non-negative data matrix. This can prevent
the use of NMF in cases where the data contain negative val-
ues. To overcome this, Ding et al. proposed the Convex NMF
algorithm [13], where the basis matrix is formed as a convex
combination of the data points. They showed that Convex NMF
tends to find sparse solutions and the basis vectors correspond
closely to observed data points, making the basis more inter-
pretable over an NMF basis. Thurau et al. introduced Convex
Hull NMF (CH-NMF) to improve computation speed on large
datasets [14]. They proposed to form the basis matrix from con-
vex combinations of the convex hull vertices rather than the data
itself. They showed that the basis vectors from this approach
tend to lie at the extremities of the data. Thus, the CH-NMF
basis contains a wide range of basic units present in the data.

We propose the Convex Hull Convolutive NMF (CH-
CNMF) algorithm that extends CH-NMF to incorporate tempo-
ral context in time-series data. Like CNMF, the basis will con-
tain a set of temporal patterns found in the data. However, the
basis will inherit the desirable properties of the CH-NMF basis:
temporal patterns that correspond closely to temporal units in
the data and represent a wide range of dynamics.

This paper is organized as follows. Section 2 describes the
CH-CNMF algorithm. Section 3 discusses the experiments on
synthetic time-series and real articulatory data and compares the
performance quantitatively and qualitatively to CNMF-SC. Fi-
nally, Section 4 offers our conclusions and directions for future
work.

2. CH-CNMF Algorithm
Assume a multivariate time-series V = [v1 v2 · · ·vn] ∈
Rm×n of m variables over n time frames. CH-CNMF tries to
find K temporal patterns of duration T in V . To achieve this,
we propose minimizing the cost function

(Ĝ, Ĥ) = argmin
G,H

∥∥∥∥∥V − S
T−1∑
t=0

G(t)
t→
H

∥∥∥∥∥
2

F

+ λ ‖H‖1

subject to ‖gk(t)‖1 = 1, ∀k ∈ {1, . . . ,K},
∀t ∈ {0, . . . , T − 1}. (1)

S ∈ Rm×p are p vertices of the convex hull of V . G ∈
Rp×K×T

+ forms convex combinations of the columns of S to
represent the time series in V . Because we want convex com-
binations of the columns of S, we require G to have non-
negative entries and for each column to sum to 1. In Equa-
tion 1, G(t) ∈ Rp×K

+ indexes the third dimension of G.
W (t) = SG(t) ∈ Rm×K is a basis for V . By combiningW (t)
over all t into a three-dimensional tensor W ∈ Rm×K×T , we
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have a time-varying basis for V that captures K temporal pat-
terns of duration T . H ∈ RK×n

+ represents the activations of

V in terms of the basis W . The notation
t→
H means that the

columns of H are shifted t places to the right and t all-zero
columns are filled in on the left. The λ parameter trades off re-
construction error for sparsity in the activation matrix. Sparsity
in the activations forces each data point in V to be represented
by a few basis vectors. This usually leads to more interpretable
basis vectors.

To find the vertices of the convex hull, we follow the ap-
proach described in [14]. First, compute the D eigenvectors ed

corresponding to the D largest eigenvalues of the covariance
matrix of V . D is chosen such that the eigenvectors account for
95% of the data variance. Then, project V onto 2D subspaces:

Ṽp,q = [ep eq]
TV ∈ R2×n, ∀p, q ∈ {1, . . . , D}, p 6= q. (2)

Next, find the vertices of the convex hull of Ṽp,q using a convex
hull-finding method (e.g. [16, 17]) and store the frame indices
of the vertices in ch(Ṽp,q). Finally, form S by concatenating all
the points in V marked as a convex hull vertex:

S = [Vch(Ṽ1,2)
Vch(Ṽ1,3)

· · ·Vch(ṼD−1,D)], (3)

where Vch(Ṽp,q)
are the columns of V corresponding to the in-

dices in ch(Ṽp,q). There may be duplicate columns in S, so the
repeated columns should be removed.

To find G and H that minimizes the cost function (Equa-
tion 1), we iteratively alternate updating G and H until the
cost function converges or a given number of iterations have

occurred. Let F =
∑T−1

t=0 G(t)
t→
H and In be the n×n identity

matrix. The update for G is

G(t)← G(t)⊗
(
[STV ]+ + [STS]−F

) t→
HT

([STV ]− + [STS]+F )
t→
HT

, ∀t ∈ {0, . . . , T−1},

(4)
where [A]+ = 0.5(|A|+A) and [A]− = 0.5(|A|−A) represent
the positive and negative elements of matrixA respectively. The
update for H is

H ← H ⊗

∑T−1
t=0 GT (t)

(
[STV ]+

←t

In + [STS]−
←t

F

)
∑T−1

t=0 GT (t)

(
[STV ]−

←t

In + [STS]+
←t

F

)
+ λ

.

(5)
The operator ⊗ means element-wise multiplication, and the di-
vision is element-wise.

3. Experiments
We evaluated the CH-CNMF algorithm on two datasets. The
first dataset was created synthetically to aid evaluation of the ba-
sis vectors and verify that the algorithm finds a meaningful ba-
sis. For the second dataset, we used vocal tract constrictions de-
rived from real-time MRI images of a subject speaking TIMIT
sentences. We chose this dataset to assess the performance of
CH-CNMF on realistic time-series data and to uncover articu-
latory gestures in a data-driven manner. For both datasets, we
compared the performance of CH-CNMF to CNMF-SC.

3.1. Synthetic data
To create synthetic time-series data, we created three Markov
chains, each with four states. Each state generates a sam-
ple from a two-dimensional Gaussian distribution with a given

mean vector and covariance matrix. The means were chosen
such that each Markov chain produces distinct 4-sample se-
quences. Within each chain, the states transitioned from left
to right with probability 1 to ensure that the chain outputs ex-
actly four samples. After transitioning out of the last state, an-
other chain is chosen, with each chain having equal probability
of being selected. We used this procedure to generate a 1000-
sample time series. Figure 1a shows an example output plotted
in two-dimensional space, with circles indicating the states of
the Markov chains and arrows indicating transitions between
the states within each chain. Note that the output of one chain
is separated spatially from the other two, while the other two
chains share the same second state.

Since we know that the data has three distinct patterns with
a length of four samples, we set K = 3 and T = 4. Addition-
ally, we experimentally determined λ = 1 to be a good choice.
In this data, we know that only one of the three chains are ac-
tive at a particular time. This suggests that the activation matrix
H should be about 67% sparse. Thus, we set the sparsity pa-
rameter in CNMF-SC to 0.67. We used 100 update iterations
for each algorithm, and we ran the experiment 100 times to ac-
count for effects of random initialization.

Figures 1b and 1c show the basis for CH-CNMF and
CNMF-SC respectively. From these figures, one can see that
CH-CNMF recovers the three temporal patterns more clearly
than CNMF-SC. Specifically, we see that CH-CNMF accurately
chooses clusters that reside near the convex hull of the data.
Meanwhile, inner clusters are represented less accurately; the
algorithm tends to shift the basis vectors for the inner clusters
closer to the convex hull. On the other hand, the CNMF-SC
basis is less interpretable because the basis patterns don’t corre-
spond closely to the observed data points. CNMF-SC scales the
rows of the activation matrix H to have unit `2 norm, so the ba-
sis patterns are scaled accordingly to minimize the CNMF-SC
cost function. These results agree with those found by Thurau
et al. [14], where the CH-NMF basis lies near the convex hull
of the data while the NMF basis does not correspond well to the
data points. While it is possible to scale the CNMF-SC basis
vectors to lie closer to the data points, this procedure may not
be feasible on larger and real-world datasets. Thus, we see that
CH-CNMF captures temporal structure in the data more reliably
than CNMF-SC.

3.2. Vocal tract data
To supplement the synthetic data experiment, we tested our al-
gorithm on measurements of constriction degrees (Euclidean
distances) between active and passive articulators during a
speech task. Articulatory Phonology [18] theorizes that the
movements of the vocal tract can be decomposed into units of
vocal tract actions called gestures. Gestures implement con-
strictions of variable degrees along the vocal tract, and the tim-
ings of the gestures are arranged into a gestural score. The goal
in this experiment is to derive such gestures along with a gestu-
ral score in a data-driven manner.

We used mid-sagittal real-time MRI data of the vocal tract
from the F1 speaker of the USC-TIMIT database [19]. The
frame rate of the MRI data in this corpus is 23.18 frames per
second. We used an automatic segmentation algorithm [20] to
find the contours of the air-tissue boundaries of the vocal tract
in each frame. Figure 2 shows an example MRI frame and the
contours found from this frame. Based on the contours, the
constriction degrees were measured at five places of articula-
tion (bilabial, alveolar, palatal, velar, and pharyngeal), plus the
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(a) Input data (b) CH-CNMF basis patterns (c) CNMF-SC basis patterns

Figure 1: Input synthetic data and the recovered temporal patterns from CH-CNMF and CNMF-SC. The circles in (a) indicate the states
of the Markov chains. The arrows represent the temporal progression within the Markov chains and the recovered basis patterns.

(a) MRI frame (b) Contours

Figure 2: Air-tissue boundary contours (thin black lines) from
a single real-time MRI frame. The thick black lines mark the
places of articulation where constrictions are measured (from
lips to glottis: bilabial; alveolar; palatal; velar; velopharyngeal
port; pharyngeal). For a given frame, constrictions are mea-
sured as the Euclidean distances between opposing gray dots.

velopharyngeal port opening. The locations of the constriction
measurements are indicated in Figure 2b with thick black lines.
There are 460 TIMIT sentences, but a technical error during
data collection caused the head orientation of the first 250 sen-
tences to be different from the rest. To avoid any errors due to
incorrect vocal tract segmentation, we performed our analysis
using only the first 250 sentences. We assigned the first 150
sentences as the training set, which we used to learn a basis of
gestures. The remaining 100 sentences were assigned to the
testing set to evaluate how well the gesture basis generalizes to
unseen data.

The parameters K and T are chosen based on the data and
application. We chose T = 3 to capture gestures with a dura-
tion of 130 ms (3× 1 second

23.18 frames ≈ 130 ms), which is roughly the
average duration of a phoneme. Since we measured constric-
tions at 6 locations, we chose K = 6. Choice of K is highly
data dependent and can be chosen in a more principled manner
for a specific application. We used the sameK and T values for
CNMF-SC, and we set CNMF-SC’s sparsity parameter to 0.7,
as suggested in [3]. We ran both algorithms with 200 update
iterations.

After running the algorithms, the bases contain constriction
degrees at the six locations in the vocal tract. In order to vi-
sualize the bases, we used a forward map [21] to convert the
constriction degrees to articulatory weights [22] that describe
the relative contributions of ten vocal tract-shaping components
towards the formation of a given vocal tract shape. Figure 3
shows vocal tract movements (gestures) due to the constrictions
found in the CH-CNMF basis. Figure 4 shows the same for the
CNMF-SC basis. In the interest of space, we only show four

(a) 1st gesture (b) 2nd gesture

(c) 3rd gesture (d) 4th gesture

Figure 3: Visualization of the CH-CNMF gesture basis. The
vocal tract at time step 1 is shown in light grey, time step 2 in
dark grey, and time step 3 in black.

gestures from each algorithm. The CH-CNMF basis shows in-
terpretable articulatory gestures; for example, Figure 3a shows
the tongue body rising, while Figure 3c shows the tongue form-
ing a dental/alveolar constriction while the velum simultane-
ously closes. In general, the gestures found by CH-CNMF are
more overt and display a wider range of vocal tract movement
than those found by CNMF-SC. This agrees with the results of
the synthetic data experiment, where CH-CNMF tends to find
temporal patterns at the extremities of the data, while the tem-
poral patterns from CNMF-SC generally don’t correspond to
the data.

To evaluate how well the learned gestures generalize to
unseen data, we fix the basis for each algorithm and find the
activation matrix Htest for each sentence in the test set using
Equation 5. We then reconstruct the constrictions and find the
root mean square error (RMSE) and correlation between the in-
put and reconstructed constrictions. Table 1 shows the average
RMSE and correlations for both algorithms on the test set. We
used a one-sided Wilcoxon rank-sum test to find that the RMSE
was significantly lower (p ≈ 0) and the correlation was sig-
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(a) 1st gesture (b) 2nd gesture

(c) 3rd gesture (d) 4th gesture

Figure 4: Visualization of the CNMF-SC gesture basis. The
vocal tract at time step 1 is shown in light grey, time step 2 in
dark grey, and time step 3 in black.

nificantly higher (p ≈ 0) for CH-CNMF than for CNMF-SC.
This indicates that the gestures found by CH-CNMF generalize
better than the CNMF-SC basis.

Additionally, we used an experimental procedure described
in [3] to evaluate the extent to which the bases captured tempo-
ral structure in the data. If we suppose that the bases contain
random temporal patterns, then we don’t expect a significant
change in the RMSE and correlation between the input and re-
constructed constrictions when we substitute Htest with a ran-
dom matrix Hrand with the same sparsity as Htest. To ensure
Hrand has the same sparsity as Htest, we used the method pro-
posed by Hoyer [11] to set the `1 and `2 norms of each row
of Hrand to the `1 and `2 norms of the corresponding rows of
Htest. The results of reconstructing with a random matrix are
shown in Table 1. Using a one-sided Wilcoxon rank-sum test,
we found that the RMSE was significantly lower when recon-
structing withHtest than withHrand for both CH-CNMF (p ≈ 0)
and CNMF-SC (p ≈ 0). Also, the correlation was significantly
higher when reconstructing with Htest than with Hrand for both
CH-CNMF (p ≈ 0) and CNMF-SC (p ≈ 0). These results sug-
gest that both algorithms learn meaningful temporal structure
from the training set data.

Table 1: Root mean square errors (RMSE) and correlations
when reconstructing vocal tract constriction using a calculated
activation matrix Htest and a random activation matrix Hrand.

Algorithm
Activation

matrix RMSE (mm) Correlation

CH-CNMF Htest 0.824 0.964
Hrand 3.419 −0.002

CNMF-SC Htest 6.058 0.619
Hrand 8.127 0.168

Figure 5: CH-CNMF activation matrix for the TIMIT sentence
“Who took the kayak down to the bay?”. The time-aligned
Arpabet transcription is shown below the matrix.

For additional insight, we plot the CH-CNMF activation
matrix of a TIMIT sentence from the testing set in Figure 5. The
activation matrix indicates how much a gesture is activated at a
particular time, with lighter colors indicating greater activation.
A time-aligned Arpabet transcription of the sentence is shown
below the activation matrix to help correlate acoustics with ges-
ture activations. From inspection of Figure 5, it appears that
the third gesture occurs during coronal stops while the fourth
gesture is associated with high back vowels. These observa-
tions correspond closely to the gestures in Figure 3, where the
third gesture shows a dental/alveolar constriction formed by the
tongue tip and the fourth gesture shows the tongue positioned
high in the mouth. Further observations about the remaining
gestures can be made more clearly from activation matrices of
other TIMIT sentences. Thus, the activation matrix can be inter-
preted as a “gestural score” because it indicates the occurrences
of different gestures.

4. Conclusion
We introduced the Convex Hull Non-negative Matrix Factoriza-
tion (CH-CNMF) algorithm to find temporal patterns in multi-
variate time-series data. It factors a data matrix into a basis
tensor that contains temporal patterns and an activation matrix
that indicates the times at which the temporal patterns occur
in the data. Using synthetic data, we showed that CH-CNMF
extracts better, more interpretable temporal patterns than Con-
volutive Non-negative Matrix Factorization with sparsity con-
straints (CNMF-SC). With vocal tract constriction data, we
were able to find a wider range of articulatory gestures using
CH-CNMF than using CNMF-SC. We also demonstrated that
the gestures contained in the CH-CNMF basis generalized bet-
ter to unseen data and extracted better vocal tract dynamics
than the CNMF-SC basis by reconstructing the data with sig-
nificantly lower RMSE and significantly higher correlation. Fi-
nally, we showed that the activation matrix can be interpreted as
a “gestural score”.

Building upon this work, we will explore training the ba-
sis to be discriminative of the labels in a labeled dataset (e.g.
phonemes in an utterance). To make this algorithm computa-
tionally tractable on large datasets, we will explore different
formulations and optimization techniques to speed up calcu-
lations and scale down memory requirements. We will apply
this algorithm for other speech-related tasks, such as phoneme
classification and automatic speech recognition, and to domains
beyond speech where extracting temporal patterns from data are
useful.
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